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Abstract

I propose some empirical experiments about the theoretical properties of deep neural net-
work loss surfaces, after some very recently discovered phenomena (grokking) have not yet
been thoroughly studied in this context.

My hypothesis is that grokking (Power et al. 2021, unusually long training that suddenly
improves generalization) happens during a walk along the global valley (Nguyen 2019, the
continuous region of the loss surface that contains most local minima). The experiment (al-
though this may be adjusted during research) is to periodically sample optimal points during
the grokking phase of the training and check if there’s linear mode connectivity between suc-
cessive ones. If there is, the hypothesis is true. Another way to say that, if the resulting plot
is wavy, that means the optimization process “jumps”, or climbs up and down valleys between
minima, but if it’s smooth and stays small, then it “walks” along the bottom of the global
valley.

1 Introduction

Studying the loss surfaces of deep neural networks seems to be a useful way to gain various
insights into how these models work. Although the effectiveness of deep learning is empirically well

(a) Illustration where the hypothesis is true. (b) Illustration where the hypothesis is false.

(c) Linear mode connectivity graph for 1a. There
is linear mode connectivity, so the hypothesis is
true.

(d) Linear mode connectivity graph for 1b. There is
no linear mode connectivity.

Figure 1: Intuitive visualization of the proposed experiment. We sample successive points during
grokking and check if there’s linear mode connectivity between them. (We essentially plot linear
slices of the landscape.) The example loss landscape is greatly simplified to illustrate the point.
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validated, i.e. we know it works in practice, interestingly, a big part of our theoretical understanding
of it is still missing as of 2021 (Ma et al., 2020).

Even though it’s a commonplace that (stochastic) gradient descent can be intuitively visualized as
traveling down on a mountainy landscape (the loss surface), always heading downwards, hoping to
find the lowest point, regularly, newer and newer discoveries are being made (every 2 years or so),
about real DNN loss surfaces behaving in weird and unexpected ways (Zhang et al. 2016, Frankle
and Carbin 2018, Garipov et al. 2018, Power et al. 2021) that initially seem counter-intuitive for
the landscape metaphor, probably in part because these surfaces live in million-or-so dimensional
spaces, which behave differently than our well known 2 or 3 dimensions, and in part because of some
stochastic properties of SGD. This research proposal aims to continue some of the most recent such
findings of NN loss surfaces, (more or less picking up where they left off with the “future work”
section), and proposes performing some simple, clear, and hopefully insightful experiments.

Grokking (Power et al., 2021) is a newfound phenomenon, wherein training DNNs for an unusually
long time prompts them to improve generalization. Weight decay is assumed to take an important
part in it.

Neural networks trained on complex data have a lot of local minima. Previously, it was thought not
to be a problem because these minima are almost equally good. More recently, it was discovered
(Garipov et al. 2018, Draxler et al. 2018) that these minima are not isolated, but connected, sort
of forming a high-dimensional valley. My intuition of grokking is that during training, the loss
goes directly to the closest minimum, straight down the wall of the valley, but grokking happens
as a slow walk along the bottom of the valley.

The experiment is to measure linear mode connectivity between the points during grokking. Even
though it may seem obvious this is the case, as we’ve seen, neural networks have a track record
of defying what seems intuitive, so I’d argue whatever comes out of this experiment would be a
valuable contribution to helping understanding deep learning for fellow researchers.

2 Background, related work

In this section, well-known concepts will be described with short definitions. More peculiar research
will be explained longer.

DNNs or deep neural networks are a class of machine learning algorithms that are perhaps the
most used in practice as of 2021. In this discussion, it’s enough to consider them as black-box
algorithms. They behave like functions, so for a given input, they provide an output (prediction),
and they have a certain number of real-valued parameters (adjustable ”knobs” on the box), called
weights, which control the function somehow. In the supervised learning problem setting, we are
provided with training examples, which are pairs of (presumedly correct) inputs (features) and
corresponding outputs (labels) (e.g. a photo of a dog, and the label ”dog”). I will use parameters
and weights interchangeably. Some research emphasizes that these models are overparametrized,
meaning they have much more parameters than the number of training examples, and they could
”memorize” all training examples (however, in practice, these models generalize well).
Loss (or, using a more general term, objective function) is a single-value metric of how badly our
model performs. It’s usually some ”distance” between the algorithm’s output and the true label,
averaged over the entire training set. The task of the learning problem is to ”train” the model,
in other words, to adjust the weights in a way that minimizes the loss (thus meaning the model’s
output is as close to the correct output as it can be for every example).
Error is similar to loss, but there can be multiple error metrics, and, in contrast to the loss, it’s
not necessarily related to the training process. Accuracy is an error metric for classification tasks,
which measures the fraction of correct predictions.
Generalization is whether the algorithm works well for previously unseen examples, too. A
common way to assess generalization is to split the training data, usually into 2 (or 3) sets,
training, and test (or training, validation, and test) sets, then training on the training set and
testing the performance on the test set. Generalization error is the difference between the training
error and the test error (the errors measured on respective sets). Overfitting is when a model
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learns the training examples perfectly, but fails to generalize.
Regularization is usually adding extra terms to the loss function to penalize undesirable solutions,
and prevent overfitting. ℓ2-loss, or weight decay is a regularization that penalizes large weights,
and thus in a sense, prefers simple solutions.

Loss surface or loss landscape of a deep neural network is a high-dimensional plot. Each point
corresponds to a configuration of the neural network weights, and the value (the altitude) is the
training error produced with those weights. In a sense, (in the supervised learning setting), a loss
surface encodes the whole training set, it outputs what the training error would be on the whole
training set with the given parameters. It’s also affected by the type of loss used, and a potential
regularization. In illustrations, we plot them in 2 or 3 dimensions, but this simplification hides
many properties of them, like the fact a point has many neighbors in different directions. Since it is
”loss”, the badness of mistakes the algorithm makes, the lower the better. Many counter-intuitive
phenomena were discovered about loss landscapes, and more generally DNNs. Some examples
are: DNNs can easily fit random data (Zhang et al., 2016), generalization gap and sharp minima
(Keskar et al., 2017), sharp minima can generalize (Dinh et al., 2017). the lottery ticket hypothesis
(Frankle and Carbin, 2018), double descent (Belkin et al., 2018), SGD can reach bad minima (Liu
et al., 2019), kernel and rich regimes (Woodworth et al., 2020).

GD and SGD. DNNs are usually trained with some type of gradient descent (GD). The goal is to
make small adjustments to the weights that each reduce the loss. After a number of adjustments,
a low loss can be achieved. The process can be conceived as taking small steps downward on the
loss surface. Our current “position” is the current configuration of the weights. Evaluating the loss
for the full training set is computationally expensive, so most practical applications use stochastic
gradient descent (SGD), which takes a small random so-called mini-batch of training data, and
calculates the gradient on those. The SGD step can be thought of as a noisy estimate of the (full-
batch) gradient descent (GD) step, and this noise can even provide some beneficial properties, like
preferring flat minima over sharp ones (Keskar et al., 2017). Flat minima are usually found to
generalize better (on the test set). Adaptive step-size algorithms, which can consider scale and
momentum information (intuitively, taking steps vs. rolling a ball downhill), like Adam (Kingma
and Ba, 2014) are also commonly used.

Mode connectivity can refer to both checking whether this property holds, or the bigger discovery
that in real DNN loss surfaces this property in fact almost always holds among minima. Modes are
optimal points of the loss surface. (In the usual statistical sense, modes are “bumps” on graphs,
but here, since we’re talking about loss, and lower is better, modes are actually “holes”.) Two
modes are mode connected if there exists a path between them along which the loss and error are
almost constant (and since modes have low loss, it also stays low along the path). We essentially
interpolate the weights along the path and check the training loss at each point along the path.
Such mode connectivity plots between two points and along a given path can be plotted, with the
value of the plot being the training error. If the plot is a flat line, there is mode connectivity. If it is
a bump, there isn’t. The plots in fig. 1 are actually multiple mode connectivity charts placed next
to each other or “stitched together”, where the ending point of the first one is the starting point of
the next one. (Or equivalently, it can be thought of as a mode connectivity plot along a polygonal
path, which contains multiple line segments.) Previously it was commonly thought that DNN loss
landscapes have many isolated (almost equally good) minima. Garipov et al. (2018) and Draxler
et al. (2018) simultaneously discovered that these modes are connected, and provided procedures
to find such a path, similar to gradient descent. Garipov et al. (2018) used VGG (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016) models trained on CIFAR-10, CIFAR-100, and
ImageNet. They found that usually, they could find a path with just two line segments, so a path
composed of two straight lines. They also took this idea further and, leveraging their findings,
invented an optimal ensembling algorithm (Fast Geometric Ensembling, FGE). They train one
network, then use a cyclic learning rate and really few steps to sample ”adjacent” points. They
average the optima along such a curve and achieve results better than traditional training.
Linear mode connectivity is a special case of mode connectivity where the path is a straight
line. So it holds when two modes’ weights can be linearly interpolated, without the error going
up along this path. Linear mode connectivity is sometimes used to assess the similarity of minima
(configuration), with mode-connected ones being ”essentially the same”, or ”really similar” minima,
like in Frankle et al. (2020). Since almost every two points are mode-connected (along some path),
measuring general mode connectivity is not useful in terms of this research, and we will always
measure linear mode connectivity.
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Global valley was used in Nguyen (2019), where he studied mode connectivity. It is possible
that in that paper it is given a slightly different definition, but I will just use it as a convenient
simple term to refer to the large mode connected low-loss area in DNN loss surfaces that Garipov
et al. (2018) and Draxler et al. (2018) discovered and Garipov et al. (2018) further suggested in
that paper in sec. 7, referred to as simply ”valleys of low loss”. In fig. 1a and 1b, both valleys are
labeled as global valley, because these are connected, there is a single continuous global valley.

Grokking (Power et al., 2021) is the phenomenon where unusually long training suddenly improves
generalization. So train a network up to overfitting perfectly but keep training, for orders of
magnitudes more epochs. As of 2021, it has only been demonstrated on small synthetic datasets
of operation tables. Regularization is assumed to play an important role in it, they used ℓ2
regularization.

3 Problem definition

As the title and the introduction already said, the question is whether grokking follows a path
along the bottom of the global valley.

In the grokking process, the training loss minimizes quickly, but after a long training, the test
loss (the generalization error) also drops. It seems apparent that the point travels, possibly a long
distance in this long time. When this phenomenon is viewed through the lens of the landscape
metaphor, it seems plausible that after initially finding a (local) minimum (rushing straight down
the wall of the valley), the point of optimization moves slowly along the bottom of the global
valley, or equivalently, along a path that yields mode connectivity, before it finds an even ”better”
optimum (probably better because this one also minimizes the ℓ2 regularization loss).

The goal is to perform an experiment that can quantitatively assess if this is the case, if grokking
follows this path. To the best of my knowledge, this experiment hasn’t been performed and
published yet. Learning the result could give us new insights into the geometry of loss surfaces.
Confirming the hypothesis would be valuable, but disproving it would also surface some new
phenomena. It could establish a link between grokking and mode connectivity. There are also
many interesting small results that could be discovered during these experiments, just as some
off-the-cuff examples, the number of such paths between two points could affect the experiment,
and it could prompt follow-up questions to measure this property, or “noisiness” of SGD could
affect the experiment, and it could prompt measuring how much the noisiness of SGD prevents it
from following optimal paths on the landscape, and how learning rate or bach size effects it, etc.).

One way to measure certain properties of the path of optimization, or how “similar” two modes
are is through measuring linear mode connectivity. Of course, there could be more than one
way to measure properties of the path of optimization, and I may resort to those, but linear
mode connectivity seems a sensible first guess. We start a training, wait for the grokking phase,
sample points during grokking, and see if there’s linear mode connectivity between successive ones,
meaning if we directly linearly interpolate the points, the loss doesn’t go up much along this path.

More details about performing the experiment can be found in section 4.3.2.

4 Research plan

4.1 Objectives, deliverables

Resources. A server with GPU, or Google Colab.

Objective. Set up and perform the experiment described in section 3.

Deliverables. Experiment results, paper.

4



Possible outcomes.
The following list describes a few possible outcomes of the experiment, divided into larger cate-
gories, and further divided into individual cases.

• Question is not applicable, need to change the original plan

– Upon more literature research, it’s revealed that the question is fundamentally ill-posed.
As I did some literature research, I wouldn’t consider it likely, but it’s still a possibility.

– Upon more research, it turns out the research question was trivially simple because of
some theorem or previous result or is already answered in other research exactly.

– Negative result, but it gets shown that SGD cannot follow mode-connected paths,
grokking or otherwise, anytime.

– Measuring linear mode connectivity turns out to be not the proper way to assess whether
the training follows a path. In that case, a different measurement method needs to be
found, most probably alternatives exist.

• Accept hypothesis

– Experiment runs as expected, results show linear mode connectivity.

• Reject hypothesis

– Experiment runs as expected, results show no linear mode connectivity.

• Borderline

– The mode connected loss between sampled points is neither particularly high nor par-
ticularly low. So we cannot clearly tell whether there’s linear mode connectivity. In
this case, we would need to draw inspiration from other linear mode connectivity re-
search about how they define the thresholds. Further examining the trajectory that
SGD makes can also be helpful in this case as it directly explains the result.

4.2 Timeline

Task description 2022 2023 2024
101112 1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9 10

Preparations
Kickoff
Literature review
Planning
Reproduce the grokking result
Set up experiment framework
Sanity check of the framework
Experiments
Planning
Perform experiments
Draw and formulate conclusions
Address possible follow-up questions
Ablation studies
Write-up
Planning
Compose the main body of text
Edit figures
Review, proofread
ICLR submission period?

Table 1: Proposed timeline.
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4.3 Tasks

4.3.1 Preparations

Kickoff
A meeting to clarify the goals and success criteria, and to outline high-level tasks.

Literature review
Of course, careful literature review could save us from some dead-ends and futile efforts. Ample
time should be given to review the relevant literature. Search for everything on grokking, and
try to find experiments with linear mode connectivity, both papers and source code. Litmaps
(https://www.litmaps.co) is a recent tool that seems particularly handy for this task.

Reproduce the grokking result
Reproduce the main result of the grokking paper (Power et al., 2021). To my experience, repro-
ducing a result from a paper can take up to 2 months, as a pessimistic estimate. Even more so
if there’s no code available. As of writing this in 2021, there exists a GitHub repo for the paper.
This task should probably be timeboxed, if a better goal can’t be achieved within the timeframe,
we settle with a worse goal. It’s not required to reproduce the exact result, only the generic phe-
nomenon. In the worst case, if we’re far from reproducing grokking, it’s enough if we can argue
for why our results would be relevant with “our version” of grokking.

Set up experiment framework
The idea is to create the “measurement tool” first and perform the experiment afterwards when
it’s done and can be trusted. Create a git repo, agree on coding conventions. Agree about whether
to use testing. Agree in using an experiment tracker, like wandb (https://wandb.ai). The
framework should be capable to do trainings, and draw (or otherwise output) mode connectivity
graphs.

Sanity check of the framework
Run an experiment that is already known to have linear mode connectivity and one which is known
not to. Check if the framework outputs the expected results.

4.3.2 Experiments

Perform experiments
Perform the experiment with the following 2 models: the original operation tables from the grokking
paper, and a small real-world computer vision model (probably a VGG-16 or ResNet-18) trained
on CIFAR-10. When writing this research proposal, a lot of details are not known about the
feasibility of the second experiment (like whether VGG on CIFAR-10 would exhibit grokking in
the first place, and what are the computational requirements for it), so only the first is mandatory,
the second is optional. Start the training and wait for the grokking phase. In the grokking phase
(after overfitting and before generalization), save the weights of the network as checkpoints, every
n gradient descent step. A full epoch would be probably too long. (The process is described
here for simplicity, but these are also features of the experiment framework and should be already
implemented at this point.) If that would yield too many samples, it’s enough samples for a shorter
duration. After the training is done, check if grokking indeed happened, or stop the training as
soon as grokking happens. Create mode connectivity plots for 10 or so subsequent checkpoints.
Determine, based on the plot, if there is mode connectivity. Comparing the increase in loss to a
previously agreed threshold. If we don’t see mode connectivity, the experiment can be repeated
with lower n. In theory, if everything goes perfectly, only this single experiment execution and this
single result is needed, but of course, in practice, probably multiple tries and adjustments will be
needed, doing changes as we go that we see fit.

Draw and formulate conclusions
Draw the first round of conclusions from the results. Write notes (we’re not yet writing paper,
but some drafts would be useful). At this point, of course, we don’t know what we will see. It’s
possible that we discover new phenomena.
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Address possible follow-up questions
As things will most likely not go exactly as planned (in terms of the results), we will most likely
have follow-up questions. I leave ample time for these. Formulate follow-up questions, and perform
follow-up experiments.

Ablation studies
Remove certain parts and components of the experiment to see what contributes to the results.
In this experiment, I expect that both the model and the experiment can be ablated in some
way. It could also take some time to address and perform every important ablation. This task is
time-boxed, anything we don’t have time for goes to “future work”.

4.3.3 Write-up

Compose the main body of text
At this point, the findings should be already formulated. Compose the main text, aiming at about
8 pages (ICLR recommendation, max. is 10), with figures. Agree on how many appendices to use.
Add tables with the result, if applicable.

Edit figures
Create 2-3 figures. The “Figure 1” should be a cartoony overview of the whole experiment, visualiz-
ing everything on a high level. In addition, probably a grokking plot, and a mode connectivity plot
will be needed, times the different models we ended up testing (operation tables, VGG). Ablations,
if any, probably also require basic plots.

Release code
Decide whether to release the code publicly. A script that reproduces the numbers from the paper
(without the whole experimenting framework) should be sufficient. If so, finalize and release the
code on GitHub.

4.4 Impact

In the short term, these kinds of experiments and research questions seem to be among those types
which get the most attention at conferences, as neural network loss surfaces and optimization
behavior seems somewhat mysterious, with a lot of unsolved problems and unexpected discoveries.

On the other hand, to my understanding, this is an experiment that someone, somewhen eventually
will perform (or the experiment doesn’t work, in which case probably no one will publish the
negative results). It’s a piece of the puzzle, and providing this result would contribute to the
common understanding of deep neural networks and contribute to the machine learning community.
If the outcome is not what is expected, that is even more exciting, because that would mean the
discovery of yet another counter-intuitive phenomenon.

In the long term, this result (in particular depending on the outcome) can potentially affect prac-
tical applications, such as better optimization algorithms (faster or more memory-efficient), new
ensembling methods, helping the study of generalization and systematic generalization, and im-
proving loss landscape visualization. A general better understanding of deep learning could lead
to many advances.
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